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Bilan du cours précédent

Aprés le cours précédent, vous étes capables :
m de comprendre un systéme linéaire sous plusieurs de ses formes, algébriques et
géométriques, et de le transformer;

m d'appliquer I'algorithme du pivot de Gauss sur des matrices quelconques, et de nommer les
types de matrices qu’il peut fournir (matrices échelonnées et échelonnées réduites) ;

m d’exprimer |'ensemble des solutions d'un systéme linéaire sous forme paramétrique;
m de manipuler des combinaisons linéaires de vecteurs de R";

m de déterminer si une famille de vecteurs de R™ est liée ou libre.
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A l'issue de ce cours, vous serez capables :

m de reconnaitre certains types particuliers de matrices;

de manipuler les opérations matricielles de base (addition, multiplication, transposée) ;

m de définir et manipuler I'inverse d'une matrice carrée;

de justifier qu'une matrice carrée est inversible ou non;

m de calculer I'inverse d'une matrice.
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Plan de cours

Opérations matricielles
Inverse d'une matrice
Matrices élémentaires, algorithme de Gauss-Jordan

Caractérisation des matrices inversibles
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Plan de cours

Opérations matricielles
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Soient m,n € N*. On appelle matrice (de taille (ou de type)) m x n un tableau & m lignes et
n colonnes constitué d'éléments du méme ensemble. On la note

ail G2 - Qip
a1 G2 - G2n
A = [aslicicm =
1<5<n
Am1 Am2 o Omn

L'élément a;; est appelé le coefficient de A situé en position (i, j) pour i € [1;m] et
j € [1;n].

Définition
L'ensemble des matrices m x n a coefficients réels est noté R™>*™. L'ensemble des matrices
m x n a coefficients complexes est noté C™*",
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Quelques définitions

m Matrice nulle de taille m x n : matrice dont tous les coefficients sont nuls, notée Oy, .
m Matrice ligne : matrice de taille 1 x n.

m Matrice colonne : matrice de taille n x 1.
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Quelques définitions | Matrices carrées

Attention !

Toutes les définitions ci-dessous ne concernent que les matrices carrées.

m Matrice carrée d’ordre/de taille n : matrice de taille n x n.

m Diagonale principale : vecteur constitué des coefficients a;; d'une matrice carrée
(i € [1;n]).

m Matrice triangulaire supérieure (resp. inférieure) : matrice carrée dont tous les coefficients
situés en-dessous (resp. au-dessus) de la diagonale principale sont nuls. Autrement dit,
1>] = aiij(resp.i<j - aijZO).

aip a2 - aip ay,. 0 -0
0 ag - a2 agy  az - 0
0 0 o Qlp Am1  Am2 ot Qln
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Quelques définitions | Matrices carrées

Attention !

Toutes les définitions ci-dessous ne concernent que les matrices carrées.

Matrice diagonale : matrice dont tous les
coefficients sont nuls, en dehors de la
diagonale principale.

aii 0 tee 0
0 a2 0
0 0 - apn
Opérations matricielles Inverses
00000

000080000000 000000

Matrice identité de taille n : matrice
diagonale de taille n dont tous les
coefficients valent 1, notée I,, (ou I, selon
le contexte).

1 0 0

0 1 0
In: .

0 0 1
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Opérations matricielles de base

Soient A et B deux matrices de méme taille m x n.

m Somme :
a1 + b1 a2 +bi2 - an +bip
as1 + bay ag2 +bya -+ oy + by
A+ B= .
Am1 + bml Am2 + bm2 Amn + bmn
m Egalité :
A=B <<= a;; =b;j, pourtousi € [I;m] et j € [1;n].

m Soit v un scalaire (réel ou complexe).

Qai; Qa2 - QGln
a2 aa922 s aaoy
aA = Aa =
A1 AAm2 e (07079777
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Opérations matricielles de base | Proprietes

Soient A, B et C' des matrices de méme taille. Soient « et J des scalaires. Les opérations
matricielles de base vérifient les propriétés suivantes :

A+B=B+ A (commutativité de I'addition)
(A 4+ B) +C=A+ (B = C) (associativité de |'addition)
A+ Om,n =A (élément neutre pour I'addition)
o(B4) = (af)A = (o)A

Oé(A =F B) = aA+ aB (distributivité de la multiplication scalaire sur I'addition)
6 (a 4 ﬂ)A =aA+ BA (distributivité de I'addition scalaire sur la multiplication)

Démonstration. Toutes ces propriétés se prouvent en écrivant explicitement les opérations
terme a terme (voir la slide suivante). O
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Opérations matricielles de base ‘ Comment écrire une preuve ?

Lorsque vous souhaitez écrire ce genre de preuve, il ne faut jamais décider arbitrairement d'une
taille pour les matrices que vous utilisez. Hors de question, par exemple, de prouver que

A+ B = B+ A en prenant A et B des matrices 3 x 2 : il faut le prouver quelles que soient les
tailles !

Voici une facon "propre" de montrer la commutativité de I'addition :

[a114+bi1  a2+biz - amn+biy |
az1 +ba1 a2 +byy - a2y + b2,
A+ B=
_aml + bml Am2 + bm2 e Amn + bmn_
[ b11 + anr bio+aiz - bip+ai, |
ba1 + ag bag +age - bop +asy
= . . ) . = B+ A.
_bml + ama bm2 +am2 - bmn + Gmn |
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Produit matriciel | Rappels

Reégle d’or du produit matriciel

Le produit entre A et B n'est défini que si le nombre de colonnes de A est égal au nombre de

lignes de B :
(mxn) x (nxp) = (mxp).
biy -+ by
Régle ligne-colonne
bui -+ by
n n
ail o+ Qip D arbry o D00 ankbiy
a -eea n n
ml mn Yooy @b e D00 amibip
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Produit matriciel | Les trois points de vue

Soient
AeR™" e BeR"P,

Premier point de vue

(AB);; = (i®™ ligne de A, j°™ colonne de B).

Le coefficient (i,7) de la matrice AB est le produit scalaire entre la i°™ ligne de A et la jme
colonne de B.

— Regle ligne-colonne.

13/37

Opérations matricielles Inverses Gauss-Jordan TCMI
000000000 e00000000 00000 000000 [e]e]



Produit matriciel | Les trois points de vue

Si
£
£
A= | . et B:[cl Co - cp].
b > :
0B
£,B
AB =
AB = [Acl Acy .- Acp] :
. £, B
La j°™¢ colonne de AB est le produit .
matrice-vecteur entre A et la jéme La i°™¢ ligne de AB est le produit a gauche

sllemne de 3. entre la i°™ ligne de A (vecteur ligne) et B.

— Pratique pour calculer rapidement — Pratique pour calculer rapidement une ligne
une colonne du produit AB. du produit AB.
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Produit matriciel | Exemple

Soient i
1 2 5 6
P )
-
AB — Ix5+2x7 1x6+2x8 (19 22
C [3x5+4xT7 3x6+4x8] |43 50
5 6 19 22
ap=[al3] alg)]-[i %)

a8= s 3 =i %
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Propriétés du produit matriciel

Soient A, B et C des matrices telles que les sommes et les produits ci-dessous aient un sens.

A(BC) = (AB)C
A(B+C) = AB + AC
(B+C)A=BA+CA
InA=A= A,

Si A € RPX™

A — AA--- A
k fois

6] AO = In
(AP)(A%) = APHe_ (AP)1 = AP

Opérations matricielles Inverses
000000000000 e00000 00000

16 /37

Gauss-Jordan TCMI
[e]e]

000000



Oublier cette slide = couler le cours | Ecrivez donc Ia contraposée...

m Le produit matriciel n'est pas commutatif : dans la plupart des cas, AB # BA.
m De AB = AC, on ne peut pas déduire que B = C.

m De AB = O, p, on ne peut pas déduire que A = O,, , ou B = O,, ;,. Vérifier avec

1 2 7 =l
A:[?, 6]’32[—1 0.5]
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Définition

Transposée d'une matrice

Si A est une matrice m x n, on appelle transposée de A la matrice n x m, notée AT, dont les
colonnes sont formées des lignes de A.
— Les lignes deviennent les colonnes, et vice versa

On pose i
a b -5 2 1 1 1
A:{ d], B=|1 -3|, ¢=|-3 5 -2
¢ 0 4 17 1
Alors
1 -3 1
AT:[Z ccl] B =7 ﬂ cT=[1 5 7
5 1 -2 1
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Transposée d'une matrice

Proposition

Soient A et B deux matrices dont les tailles sont compatibles avec les sommes et les produits
écrits ci-dessous. Alors :

(AT)T — A
(A+B)T =AT + BT
Pour tout scalaire o, (aA)T = aAT

(AB)T = BTAT

Une matrice carrée A est dite symétrique si AT = A.
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Exercices | 1/2

Soient A = [;) Z] et B= [? 6} Calculez A + B et vérifiez que A+ B = B + A.

. 2 4 -1
SmtA-[1 3] etB_[5

S,

] . Calculez A — B et vérifiez que A— B # B — A.

[\

10

. 1 2 3 g , .
Soient A = [4 5 6] et B= [0 1|. Vérifiez que A et B respectent la régle d’or, puis
10
calculez AB et BA.
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Exercices | 2/2

Soit A — [g ;] Calculer A2, A3,
[1 2
Soit A= [3 4|. Calculer AT, puis annoncez les tailles de AT A et AAT (régle d'or)
2 0
avant de les calculer.
Soit B = i g} Vérifier que BI = IB = B.
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Plan de cours

Inverse d'une matrice
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Inverse d'une matrice | Définition

Définition

Soit A une matrice carrée de raille n. On dit que A est inversible s'il existe une matrice C de
méme taille telle que AC = I,,. Dans ce cas, on a également CA = [,,, et C est appelée
I'inverse de A. Si une telle matrice C' n'existe pas, A est dite singuliére (ou non inversible).

. 1 2 o = 2 7
Soit A = [1 1]. Vérifier que C' = [ 1 _1] est l'inverse de A.
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Inverse d'une matrice | Cas des matrices 2 x 2

Soit A = [(Cz Z] une matrice 2 x 2.

A est inversible si et seulement si ad — bc # 0. Dans le cas contraire, A est singuliére.

Si A est inversible,
1 d —b
A= —
ad — bc {—C a ]

Dire si les matrices suivantes sont inversibles. Si c'est le cas, donner leurs inverses.

2 4 3 4
a=l7 3] @ 5-]5 4

24/37

Opérations matricielles Inverses Gauss-Jordan TCMI
000000000000 000000 00e00 000000 [e]e]



Quelques propriétés

Proposition

Soit A € R"*™. Si A est inversible, alors :
A~1 est inversible et (A_l)f1 =A;
AT est inversible et (AT) ' = (A~1) .

Théoréeme

Le produit de deux matrices inversibles est inversible. Soient A et B deux matrices inversibles
de taille n x n. Alors AB est inversible et

(AB)"! = B~14"1,

Démonstration. O

Exercice : que vaut ((AB)T) ' ?
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Inverse et SEL

Proposition
Soit A € R™*™. Si A est inversible alors pour tout b € R™, le systéme d’'équations linéaires
Ax = b admet une solution unique, donnée par x = A~ 'b.

Démonstration. O
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Plan de cours

Matrices élémentaires, algorithme de Gauss-Jordan
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Matrices élémentaires | Définition

Soit A € R™*™, L'application d'une opération élémentaire du pivot de Gauss sur A peut se
réécrire comme une multiplication matricielle :

A~B << B=EFEA, oiEecR™™,

Définition

On appelle matrice élémentaire de taille m x m une matrice obtenue en effectuant une seule
opération d'élimination sur les lignes de I,,,.

Si E est une matrice élémentaire obtenue en effectuant une opération sur les lignes de I, le
produit E'A est le résultat de la méme opération effectuée sur les lignes de A.
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Matrices élémentaires | Types de matrices

Permutation
L; < Lj

Mise a

|"échelle

Elimination

Opérations matricielles
000000000000 000000

Obtenue en réalisant L; <> L; sur I,

Obtenue en réalisant L; < kL; sur I,

Obtenue en réalisant L; + L; + (L;

sur I,

Inverses
00000

EsA = A aprés Ly < kL.

1 0 0
Es=1¢ 1 0
0 0 1
E3A = A aprés Lo < Lo + £L4.
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Matrices élémentaires | Inversibilite

Proposition

Toute matrice d’élimination est inversible.

L'inverse d'une matrice d'élimination E est la matrice d'élimination du méme type que E
obtenue par |'opération élémentaire qui transforme FE en 1.
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Algorithme d'inversion de Gauss-Jordan | Principe

Théoréeme

Une matrice carrée A € R™*™ est inversible si et seulement si elle est équivalente selon les
lignes a I,,.

Démonstration. O
Conséquence : si A est inversible, il existe une suite de matrices élémentaires
E\, Es,...,E, € R**" telles que :

(Ep...EByE)A =1,

A =E,...EE.
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Algorithme d'inversion de Gauss-Jordan | Execution

AT ' =E,...EyE, = E,... BB ,.

Donc en appliquant sur I, la suite d’'opérations élémentaires qui transforme A en I,,, on
obtient A~

Algorithme d’inversion de Gauss-Jordan

Soit A € R™"*",

Construire la matrice augmentée [A|I,,].
Appliquer sur [A|I,,] les opérations d’échelonnage-réduction nécessaires a transformer A
en [,.
m Si A ne peut étre réduite a I,,, échec : A n'est pas inversible.
m Si A peut étre réduite a I,,, I'algorithme se termine en fournissant l'inverse de A :

[AlL] ~ [In|A7Y).
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Plan de cours

Caractérisation des matrices inversibles
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Théoréme de caractérisation des matrices inversibles

Ce théoréme est a connaitre par cceur!

Théoréme (de caractérisation des matrices inversibles)

Soit A une matrice carrée de taille n. Tous les énoncés suivants sont équivalents.

A est inversible.

Il existe C' € R™*" telle que L’équation homogéne Ax = 0 admet
CA=1,. la solution triviale x = 0 pour seule
Il existe D € R™*" telle que solution.
AD = 1I,. B Les colonnes de A engendrent R™.
A est équivalente selon les lignes a I,. B Pour tout b, I'équation Ax = b
A admet n positions de pivot. admet une solution unique.
. T : :
@A Les colonnes de A sont linéairement M A estinversible.
indépendantes.
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Exercice récapitulatif
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1/2

3 0

Partie 1 : Etude de la matrice A = {1 2 OJ

a) La matrice A est-elle inversible ?

b) Calculez AAT. La matrice est-elle inversible ? Si oui, calculez son inverse.
c) Calculez AT A. La matrice est-elle inversible ? Si oui, calculez son inverse.
d) Que vaut (ATA)T?

36/37

oeo



2/2

Partie 2 :

a)
1 12 -6

Soit A=1(0 1 0 |. Donnez l'inverse de A.
0 4 -1

b)

Montrez que :
0 0 0
(A-IL)A+I3) =0 0 0
0 0 0
c)
De maniére générale, soit B € R™*"™ une matrice carrée vérifiant :
(B+1,)(B-1,)=0,
Montrez que B est inversible et que son inverse est B~ = B.
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