
Calcul matriciel (1/2)
Cours #2

MT1008 – Hiver 2026

Nathan Allaire, Théo Denorme, Sacha Benarroch-Lelong



Bilan du cours précédent

Après le cours précédent, vous êtes capables :

de comprendre un système linéaire sous plusieurs de ses formes, algébriques et
géométriques, et de le transformer ;

d’appliquer l’algorithme du pivot de Gauss sur des matrices quelconques, et de nommer les
types de matrices qu’il peut fournir (matrices échelonnées et échelonnées réduites) ;

d’exprimer l’ensemble des solutions d’un système linéaire sous forme paramétrique ;

de manipuler des combinaisons linéaires de vecteurs de Rn ;

de déterminer si une famille de vecteurs de Rn est liée ou libre.
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Objectifs

À l’issue de ce cours, vous serez capables :

de reconnaître certains types particuliers de matrices ;

de manipuler les opérations matricielles de base (addition, multiplication, transposée) ;

de définir et manipuler l’inverse d’une matrice carrée ;

de justifier qu’une matrice carrée est inversible ou non ;

de calculer l’inverse d’une matrice.
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Plan de cours

1 Opérations matricielles

2 Inverse d’une matrice

3 Matrices élémentaires, algorithme de Gauss-Jordan

4 Caractérisation des matrices inversibles
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Plan de cours

1 Opérations matricielles

2 Inverse d’une matrice

3 Matrices élémentaires, algorithme de Gauss-Jordan

4 Caractérisation des matrices inversibles
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Matrices

Définition
Soient m,n ∈ N∗. On appelle matrice (de taille (ou de type)) m× n un tableau à m lignes et
n colonnes constitué d’éléments du même ensemble. On la note

A = [aij ]1≤i≤m
1≤j≤n

=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .

L’élément aij est appelé le coefficient de A situé en position (i, j) pour i ∈ J1;mK et
j ∈ J1;nK.

Définition
L’ensemble des matrices m× n à coefficients réels est noté Rm×n. L’ensemble des matrices
m× n à coefficients complexes est noté Cm×n.
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Quelques définitions

Matrice nulle de taille m× n : matrice dont tous les coefficients sont nuls, notée Om,n.

Matrice ligne : matrice de taille 1× n.

Matrice colonne : matrice de taille n× 1.
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Quelques définitions | Matrices carrées

Attention !
Toutes les définitions ci-dessous ne concernent que les matrices carrées.

Matrice carrée d’ordre/de taille n : matrice de taille n× n.

Diagonale principale : vecteur constitué des coefficients aii d’une matrice carrée
(i ∈ J1;nK).

Matrice triangulaire supérieure (resp. inférieure) : matrice carrée dont tous les coefficients
situés en-dessous (resp. au-dessus) de la diagonale principale sont nuls. Autrement dit,
i > j =⇒ aij = 0 (resp. i < j =⇒ aij = 0).

a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · a1n



a11 0 · · · 0
a21 a22 · · · 0
...

...
. . .

...
am1 am2 · · · a1n


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Quelques définitions | Matrices carrées

Attention !
Toutes les définitions ci-dessous ne concernent que les matrices carrées.

Matrice diagonale : matrice dont tous les
coefficients sont nuls, en dehors de la
diagonale principale.

a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · a1n



Matrice identité de taille n : matrice
diagonale de taille n dont tous les
coefficients valent 1, notée In (ou I, selon
le contexte).

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


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Opérations matricielles de base

Soient A et B deux matrices de même taille m× n.

Somme :

A+B =


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn


Égalité :

A = B ⇐⇒ aij = bij , pour tous i ∈ J1;mK et j ∈ J1;nK.

Soit α un scalaire (réel ou complexe).

αA = Aα =


αa11 αa12 · · · αa1n
αa21 αa22 · · · αa2n

...
...

. . .
...

αam1 αam2 · · · αamn


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Opérations matricielles de base | Propriétés

Proposition

Soient A, B et C des matrices de même taille. Soient α et β des scalaires. Les opérations
matricielles de base vérifient les propriétés suivantes :

1 A+B = B +A (commutativité de l’addition)

2 (A+B) + C = A+ (B + C) (associativité de l’addition)

3 A+Om,n = A (élément neutre pour l’addition)

4 α(βA) = (αβ)A = (βα)A

5 α(A+B) = αA+ αB (distributivité de la multiplication scalaire sur l’addition)

6 (α+ β)A = αA+ βA (distributivité de l’addition scalaire sur la multiplication)

Démonstration. Toutes ces propriétés se prouvent en écrivant explicitement les opérations
terme à terme (voir la slide suivante).
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Opérations matricielles de base | Comment écrire une preuve ?

Lorsque vous souhaitez écrire ce genre de preuve, il ne faut jamais décider arbitrairement d’une
taille pour les matrices que vous utilisez. Hors de question, par exemple, de prouver que
A+B = B +A en prenant A et B des matrices 3× 2 : il faut le prouver quelles que soient les
tailles !

Voici une façon "propre" de montrer la commutativité de l’addition :

A+B =


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn



=


b11 + a11 b12 + a12 · · · b1n + a1n
b21 + a21 b22 + a22 · · · b2n + a2n

...
...

. . .
...

bm1 + am1 bm2 + am2 · · · bmn + amn

 = B +A.
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Produit matriciel | Rappels

Règle d’or du produit matriciel

Le produit entre A et B n’est défini que si le nombre de colonnes de A est égal au nombre de
lignes de B :

(m× n) × (n× p) = (m× p).

∑n
k=1 a1kbk1 · · ·

∑n
k=1 a1kbkp

...
. . .

...∑n
k=1 amkbk1 · · ·

∑n
k=1 amkbkp




a11 · · · a1n

...
...

am1 · · · amn




b11 · · · b1p

...
...

bn1 · · · bnp


Règle ligne-colonne
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Produit matriciel | Les trois points de vue

Soient
A ∈ Rm×n et B ∈ Rn×p.

Premier point de vue

(AB)ij =
〈
ième ligne de A, jème colonne de B

〉
.

Le coefficient (i, j) de la matrice AB est le produit scalaire entre la ième ligne de A et la jème

colonne de B.

→ Règle ligne-colonne.
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Produit matriciel | Les trois points de vue

Si

A =


ℓ1
ℓ2
...
ℓm

 et B =
[
c1 c2 · · · cp

]
.

Deuxième point de vue

AB =
[
Ac1 Ac2 · · · Acp

]
La jème colonne de AB est le produit
matrice-vecteur entre A et la jème

colonne de B.

→ Pratique pour calculer rapidement
une colonne du produit AB.

Troisième point de vue

AB =


ℓ1B
ℓ2B

...
ℓmB


La ième ligne de AB est le produit à gauche
entre la ième ligne de A (vecteur ligne) et B.

→ Pratique pour calculer rapidement une ligne
du produit AB.
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Produit matriciel | Exemple

Exemple

Soient

A =

[
1 2
3 4

]
et B =

[
5 6
7 8

]
.

1

AB =

[
1× 5 + 2× 7 1× 6 + 2× 8
3× 5 + 4× 7 3× 6 + 4× 8

]
=

[
19 22
43 50

]
2

AB =

[
A

[
5
7

]
A

[
6
8

]]
=

[
19 22
43 50

]
3

AB =

[[
1 2

]
B[

3 4
]
B

]
=

[
19 22
43 50

]
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Propriétés du produit matriciel

Proposition

Soient A, B et C des matrices telles que les sommes et les produits ci-dessous aient un sens.

1 A(BC) = (AB)C (associativité de la multiplication)

2 A(B + C) = AB +AC (distributivité à gauche)

3 (B + C)A = BA+ CA (distributivité à droite)

4 ImA = A = AIn (élément neutre pour la multiplication)

Si A ∈ Rn×n :

5 Ak = AA · · ·A︸ ︷︷ ︸
k fois

6 A0 = In

7 (Ap)(Aq) = Ap+q, (Ap)q = Apq
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Oublier cette slide =⇒ couler le cours | Écrivez donc la contraposée...

Pièges !

Le produit matriciel n’est pas commutatif : dans la plupart des cas, AB ̸= BA.

De AB = AC, on ne peut pas déduire que B = C.

De AB = Om,p, on ne peut pas déduire que A = Om,n ou B = On,p. Vérifier avec

A =

[
1 2
3 6

]
, B =

[
2 −1
−1 0.5

]
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Transposée d’une matrice

Définition
Si A est une matrice m× n, on appelle transposée de A la matrice n×m, notée A⊤, dont les
colonnes sont formées des lignes de A.
→ Les lignes deviennent les colonnes, et vice versa

Exemple

On pose

A =

[
a b
c d

]
, B =

−5 2
1 −3
0 4

 , C =

 1 1 1
−3 5 −2
1 7 1


Alors

A⊤ =

[
a c
b d

]
, B⊤ =

[
−5 1 0
2 −3 4

]
, C⊤ =

1 −3 1
1 5 7
1 −2 1


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Transposée d’une matrice

Proposition

Soient A et B deux matrices dont les tailles sont compatibles avec les sommes et les produits
écrits ci-dessous. Alors :

1 (A⊤)⊤ = A

2 (A+B)⊤ = A⊤ +B⊤

3 Pour tout scalaire α, (αA)⊤ = αA⊤

4 (AB)⊤ = B⊤A⊤

Défintion
Une matrice carrée A est dite symétrique si A⊤ = A.
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Exercices | 1/2

1 Soient A =

[
1 2
3 4

]
et B =

[
5 6
7 8

]
. Calculez A+B et vérifiez que A+B = B +A.

2 Soit A =

[
2 4
1 3

]
et B =

[
−1 0
5 2

]
. Calculez A−B et vérifiez que A−B ̸= B −A.

3 Soient A =

[
1 2 3
4 5 6

]
et B =

1 0
0 1
1 0

. Vérifiez que A et B respectent la règle d’or, puis

calculez AB et BA.
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Exercices | 2/2

1 Soit A =

[
2 1
0 3

]
. Calculer A2, A3.

2 Soit A =

1 2
3 4
2 0

. Calculer A⊤, puis annoncez les tailles de A⊤A et AA⊤ (règle d’or)

avant de les calculer.

3 Soit B =

[
2 3
4 5

]
. Vérifier que BI = IB = B.
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Plan de cours

1 Opérations matricielles

2 Inverse d’une matrice

3 Matrices élémentaires, algorithme de Gauss-Jordan

4 Caractérisation des matrices inversibles
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Inverse d’une matrice | Définition

Définition
Soit A une matrice carrée de raille n. On dit que A est inversible s’il existe une matrice C de
même taille telle que AC = In. Dans ce cas, on a également CA = In, et C est appelée
l’inverse de A. Si une telle matrice C n’existe pas, A est dite singulière (ou non inversible).

Exemple

Soit A =

[
1 2
1 1

]
. Vérifier que C =

[
−1 2
1 −1

]
est l’inverse de A.
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Inverse d’une matrice | Cas des matrices 2× 2

Théorème

Soit A =

[
a b
c d

]
une matrice 2× 2.

1 A est inversible si et seulement si ad− bc ̸= 0. Dans le cas contraire, A est singulière.
2 Si A est inversible,

A−1 =
1

ad− bc

[
d −b
−c a

]

Exemples

Dire si les matrices suivantes sont inversibles. Si c’est le cas, donner leurs inverses.

A =

[
2 4
1 2

]
et B =

[
3 4
2 5

]
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Quelques propriétés

Proposition

Soit A ∈ Rn×n. Si A est inversible, alors :
1 A−1 est inversible et (A−1)

−1
= A ;

2 A⊤ est inversible et (A⊤)
−1

= (A−1)
⊤.

Théorème
Le produit de deux matrices inversibles est inversible. Soient A et B deux matrices inversibles
de taille n× n. Alors AB est inversible et

(AB)−1 = B−1A−1.

Démonstration.

Exercice : que vaut ((AB)⊤)
−1 ?
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Inverse et SÉL

Proposition

Soit A ∈ Rn×n. Si A est inversible alors pour tout b ∈ Rn, le système d’équations linéaires
Ax = b admet une solution unique, donnée par x = A−1b.

Démonstration.
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Plan de cours

1 Opérations matricielles

2 Inverse d’une matrice

3 Matrices élémentaires, algorithme de Gauss-Jordan

4 Caractérisation des matrices inversibles

27 / 37

Opérations matricielles Inverses Gauss-Jordan TCMI



Matrices élémentaires | Définition

Soit A ∈ Rm×n. L’application d’une opération élémentaire du pivot de Gauss sur A peut se
réécrire comme une multiplication matricielle :

A ∼ B ⇐⇒ B = EA, où E ∈ Rm×m.

Définition
On appelle matrice élémentaire de taille m×m une matrice obtenue en effectuant une seule
opération d’élimination sur les lignes de Im.

Si E est une matrice élémentaire obtenue en effectuant une opération sur les lignes de Im, le
produit EA est le résultat de la même opération effectuée sur les lignes de A.
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Matrices élémentaires | Types de matrices

Permutation
Li ↔ Lj

Obtenue en réalisant Li ↔ Lj sur Im E1 =

0 1 0
1 0 0
0 0 1


E1A = A après L1 ↔ L2.

Mise à
l’échelle
Li ← kLi

Obtenue en réalisant Li ← kLi sur Im E2 =

1 0 0
0 1 0
0 0 k


E2A = A après L1 ← kL1.

Élimination
Li ← Li+ℓLj

Obtenue en réalisant Li ← Li + ℓLj

sur Im
E3 =

1 0 0
ℓ 1 0
0 0 1


E3A = A après L2 ← L2 + ℓL1.
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Matrices élémentaires | Inversibilité

Proposition

Toute matrice d’élimination est inversible.

L’inverse d’une matrice d’élimination E est la matrice d’élimination du même type que E
obtenue par l’opération élémentaire qui transforme E en I.
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Algorithme d’inversion de Gauss-Jordan | Principe

Théorème
Une matrice carrée A ∈ Rn×n est inversible si et seulement si elle est équivalente selon les
lignes à In.

Démonstration.

Conséquence : si A est inversible, il existe une suite de matrices élémentaires
E1, E2, . . . , Ep ∈ Rn×n telles que :

(Ep . . . E2E1)A = In

d’où :
A−1 = Ep . . . E2E1.

31 / 37

Opérations matricielles Inverses Gauss-Jordan TCMI



Algorithme d’inversion de Gauss-Jordan | Exécution

A−1 = Ep . . . E2E1 = Ep . . . E2E1In.

Donc en appliquant sur In la suite d’opérations élémentaires qui transforme A en In, on
obtient A−1.

Algorithme d’inversion de Gauss-Jordan

Soit A ∈ Rn×n.
1 Construire la matrice augmentée [A|In].
2 Appliquer sur [A|In] les opérations d’échelonnage-réduction nécessaires à transformer A

en In.
Si A ne peut être réduite à In, échec : A n’est pas inversible.
Si A peut être réduite à In, l’algorithme se termine en fournissant l’inverse de A :

[A|In] ∼ [In|A−1].
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Plan de cours

1 Opérations matricielles

2 Inverse d’une matrice

3 Matrices élémentaires, algorithme de Gauss-Jordan

4 Caractérisation des matrices inversibles
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Théorème de caractérisation des matrices inversibles

Ce théorème est à connaître par cœur !

Théorème (de caractérisation des matrices inversibles)

Soit A une matrice carrée de taille n. Tous les énoncés suivants sont équivalents.

1 A est inversible.
2 Il existe C ∈ Rn×n telle que

CA = In.
3 Il existe D ∈ Rn×n telle que

AD = In.
4 A est équivalente selon les lignes à In.
5 A admet n positions de pivot.
6 Les colonnes de A sont linéairement

indépendantes.

7 L’équation homogène Ax = 0 admet
la solution triviale x = 0 pour seule
solution.

8 Les colonnes de A engendrent Rn.
9 Pour tout b, l’équation Ax = b

admet une solution unique.
10 A⊤ est inversible.
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Exercice récapitulatif
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1/2

Partie 1 : Étude de la matrice A =

[
1 2 0
3 0 −1

]
a) La matrice A est-elle inversible ?
b) Calculez AAT . La matrice est-elle inversible ? Si oui, calculez son inverse.
c) Calculez ATA. La matrice est-elle inversible ? Si oui, calculez son inverse.
d) Que vaut (ATA)T ?
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2/2

Partie 2 :
a)

Soit A =

1 12 −6
0 1 0
0 4 −1

. Donnez l’inverse de A.

b)
Montrez que :

(A− I3)(A+ I3) =

0 0 0
0 0 0
0 0 0


c)

De manière générale, soit B ∈ Rn×n une matrice carrée vérifiant :

(B + In)(B − In) = 0n

Montrez que B est inversible et que son inverse est B−1 = B.
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